John C. Barentine's Personal Website
  • Home
  • Bio
  • CV
  • Media
  • Photos
    • Germany 2019
    • Hungary 2019
    • Taiwan 2018
    • New Zealand 2018
    • UK 2017
    • Wyoming Eclipse 2017
    • Catalonia 2017
    • Romania 2016
    • Japan 2016
    • Korea 2014
  • Astronomy
    • Carbon Star List
    • The Bluest Hipparchos Stars
    • Astrophotography
  • Research
    • Earthshine
    • Skyglow
    • stars19
  • Papers
  • Books
    • Ashen Light of Venus
    • The Lost Constellations
    • Uncharted Constellations
  • Contact

Carbon Star List

Among my favorite targets for visual astronomy are carbon stars. These objects are truly among the gems of the night sky, given their intense hues even for relatively dim examples. While most stars show little or no prominent color through the eyepiece, carbon stars shine forth with obvious colors ranging from pale pink to bright orange to deep, saturated red.

​During the Covid pandemic year of 2020-21, carbon stars became my observing obsession. In spring 2022 I completed the Astronomical League's 
Carbon Star Observing Program, which involved visually observing 100 of the best and brightest examples in the night sky. As I worked through this program, and found others beyond those initial one hundred stars, I built the list included on this page.
Picture
Lapel pin given by the Astronomical League in recognition of completing the Carbon Star Observing Program.
PictureArtist’s impression of the structure of a sun-like star and red giant. (European Southern Observatory)
The astrophysics of carbon stars
Carbon stars get their name from the relatively high abundance of carbon in their atmospheres.  Many (but not all) are evolved stars nearing the ends of their lives. "Classical" carbon stars are luminous red giants on the asymptotic giant branch. These are stars who have finished the longest phase of a star's life, which is when it fuses hydrogen to become helium in its core. The core then contracts and heats up until the temperature becomes high enough to ignite helium fusion. The star then burns helium in its core for about 100 million years, which leaves behind carbon as a fusion product.

The interiors of these stars are convective, and through a series of what are known as "dredge up" events, the carbon 'ash' from helium burning is mixed into the upper layers of the star. The result is an overabundance of carbon in the star's atmosphere relative to what were formerly more abundant elements like oxygen; in these stars, the free carbon mainly captures oxygen to form carbon monoxide (CO), which depletes free oxygen. In the relatively cool conditions in a red giant atmosphere, the carbon atoms condense into molecules that are good at absorbing and scattering short-wavelength (blue) light while letting long-wavelength (red) light through. Classical carbon stars there appear generally much more red than red giants that aren't dredging up carbon.

In addition to the classical carbon stars, there are both dwarf and supergiant carbon stars. It is thought that some of these stars, especially the dwarfs, are the products of mass transfer in binary systems, where classical carbon stars 'pollute' the atmospheres of their dwarf companions. And there are some oddballs in the mix, like carbon Cepheid variables (e.g., V553 Centauri), hydrogen-deficient carbon stars (e.g., HM Librae and RY Sagittarii), and SC/CS carbon stars that are thought to represent a transition between classical carbon stars and S-type stars, which are cool, late-type giants with approximately equal carbon and oxygen abundances.

Essentially all carbon stars are variable stars, with periods varying from a few days to hundreds of days. Their apparent colors depend on the phase of the variation; the deepest reds are generally found around minimum light. Lastly, all red giants suffer some degree of mass loss due to strong stellar winds, much of whose output is in the form of small carbon-rich grains resembling graphite. Carbon stars therefore produce much of the interstellar dust that helps subsequent generations of stars and planets to form.

For a very thorough, if slightly dated, review of carbon stars, see G. Wallerstein and G. Knapp, Carbon Stars, Annual Review of Astronomy and Astrophysics, Volume 36, 1998, pp. 369-434.


Observing carbon stars
There are dozens of relatively bright carbon stars that are easily within reach of small telescopes, even in relatively light-polluted places. That makes them attractive targets, especially for star parties and other public outreach events.

Because of the late stage of the stellar life cycle classical carbon stars represent, they tend to be found in the halo of our galaxy rather than in the disk. So, more often than not, we see them at high galactic latitude, which in the northern hemisphere makes them generally more prominent in the spring and fall. But there are many exceptions which, mainly due to geometry, makes some carbon stars appear close to or in the disk. For fainter examples, this can make identification tricky.

Estimating the brightness of carbon stars visually can be exceptionally tricky because of the way the human visual system adapts to operating at low light levels. Many amateur astronomers are familiar with the experience of 'dark adaptation', in which one can see fainter stars visually the longer one avoids bright sources of light. Similarly, the appearance of very faint objects can be improved by using 'averted vision' (i.e., looking off-center rather than directly toward the target). In both cases, the reasons have to do with a shift in the dominance of two types of photosensitive cells in the retina as one moves from a bright environment to a dark one, or vice versa. At high light levels, the dominant photosensitive cells sense color well across much of the visible spectrum. But at very low light levels, a different kind of cell takes over that offers no color discrimination but better sensitivity to faint light. Those cells are generally more sensitive to green and blue light than others colors.

The result, as the eye transitions from bright to dim light, is something called the Purkinje effect. As the cells sensitive to color become gradually less active, one's sensitivity to long-wavelength (i.e., red) light is lost first; this is why astronomers tend to use red flashlights to preserve their dark adaptation while being able to wayfind and read from books and charts at the telescope. So, when assessing the brightness of carbon stars under conditions of dark adaptation, observers tend to underestimate their magnitudes. It's actually more advantageous to estimate carbon star brightnesses when one isn't dark adapted, although that can make it tougher to see some carbon stars when they're at or near minimum light.

If, like me, you get hooked on observing these fascinating stars, consider signing up for the Astronomical League's Carbon Star Observing Program. Anyone who completes the program by observing all 100 stars on the AL's list will receive recognition for the achievement.



The list
While not an exhaustive catalog, the list of carbon stars below consists of 164 examples ranging in brightness from +4.5 (U Hydrae, at maximum light) to +18.0 (SU Tauri, at minimum light). The columns are as follows:

1: The common name for the star. The usual nomenclature for variable stars is preferred; otherwise, the name is rendered from a standard catalog designation (e.g., HD or SAO). Hyperlinks in each case lead to the SIMBAD Astronomical Database entry for the star.
2: Cutout image of the object from the Second Digitized Sky Survey. Where possible, these are pseudo-color composites using the red and blue DSS2 plates, substituting the blue plate for the green channel in order to emphasize just how red carbon stars often are. Where I can't get a good RGB composite using Skyview, I substitute a grayscale cutout from the DSS2 Red plate only. All images are 5 arcminutes on a side and have a plate scale of approximately one arcsecond per pixel.
3: Right ascension (epoch 2000.0).
4: Declination (epoch 2000.0).
5: The constellation in which the star appears.
6: Alternative catalog designation for the star. For most stars, this is taken from one of the following sources: HD, SAO, GSC or TYC.
7: Stellar spectral type from SIMBAD.
8: B-V color.

9: Maximum V magnitude.
10: Minimum V magnitude. If no value is given, then the magnitude in Column 9 is the catalog magnitude quoted by SIMBAD.
11: Period of variation in days.
12: Link to a finder chart from the American Association of Variable Star Observers (AAVSO). These finders are 30 arcminutes on a side with north up and east at left. They show stars as faint at 12th magnitude.
13: 
Sky & Telescope's Pocket Sky Atlas chart on which the object appears. If the star is not marked, its chart number appears in parentheses. (Note that stars may appear on more than one chart in the book; I note only one chart number on which the star's position seems most easily located.)
14: Uranometria 2000.0 chart of which the star appears. The same details apply as for column 12.

The list is also available for download as a CSV file here.

Sources
Stars appearing on this list are principally drawn from the Astronomical League's list of the 100 brightest carbon stars, supplemented with 28 additional stars on its "southern hemisphere" list and a few others around the sky.  For more observing notes, see Bob King's article "Carbon Stars Will Make You See Red" (Sky & Telescope, 3 December 2014). A further valuable resource is C.B. Stephenson's Catalogue of Galactic Cool Carbon Stars. The third edition, consisting of 6,891 entries, is available here. 

ABCDEFGHIJKLMN
1
NameDSS imageRA (J2000.0)DEC (J2000.0)ConCatSIMBAD SpTypeB-VMax MagMin Mag P (d)FinderS&TUran.
2
WZ Cas
00h 01m 15s
+60° 21′ 19″
CasHD 224855C-N7III+2.346.911.0186PNG135
3
SU And
00h 04m 36s
+43° 33′ 04″
AndHD 225217C-N5+2.508.08.5IrrPNG(3)59
4
HD 26
00h 05m 22s
+08° 47′ 16″
PscSAO 109003 C-H1.5+1.048.28.3--PNG(74)(170)
5
ST Cas
00h 17m 32s
+50° 17′ 14″
CasHD 1306C-N5-0.3211.612.4--PNG359
6
VX And
00h 19m 54s
+44° 42′ 33″
AndHD 1546C-J4.5+4.437.89.3369PNG(3)59
7
NQ Cas
00h 24m 35s
+54° 17′ 17″
CasHD 1994C-J4.5+1.8110.611.5--PNG(3)(35)
8
AQ And
00h 27m 31s
+35 °35′ 14″
AndHD 2342C-N5++1.406.98.6346PNG(3)90
9
HD 5223
00h 54m 13s
+24° 04′ 01″
AndNSV 15196C-H2IIIb+1.418.38.7755PNG(5)(127)
10
W Cas
00h 54m 53s
+58° 33′ 49″
CasHD 5235C9,1e0.007.812.5406PNG(3)36
11
Z Psc
01h 16m 05s
+25° 46′ 09″
PscHD 7561C-N5+2.626.57.9144PNG5127
12
R Scl
01h 26m 58s
–32° 32′ 35″
SclSAO 193122C-N5++3.875.88.8370PNG9352
13
WW Cas
01h 33m 33s
+57° 45′ 05″
CasHIP 7260C5,5+4.049.111.7--PNG(1)37
14
V Ari
02h 15m 00s
+12° 14′ 23″
AriHD 13826C-H3.5+2.178.310.877PNG(4)174
15
R For
02h 29m 15s
–26° 05′ 55″
ForGSC 6433:295C4,3e+5.447.513.0386PNG6310
16
HD 16115
02h 35m 06s
–09° 26′ 34″
CetSAO 129989C-H3II+1.218.28.5--PNG(6)(265)
17
UY And
02h 38m 23s
+39° 10′ 09″
AndHD 16326C5,4+2.707.412.3--PNG(2)62
18
V623 Cas
03h 11m 25s
+57° 54′ 11″
CasHD 19557C-J4+1.457.38.1--PNG(13)38
19
Y Per
03h 27m 42s
+44° 10′ 36″
PerHD 21280C5,3e_Ba5+2.708.111.3252PNG(13)63
20
V466 Per
03h 41m 29s
+51° 30′ 11″
PerHD 232820C5,5_MS4+4.008.48.9--PNG(13)(39)
21
U Cam
03h 41m 48s
+62° 38′ 54″
CamHD 22611C-N5+0.506.97.6400PNG11(18)
22
AC Per
03h 45m 03s
+44° 46′ 52″
PerTYC 2875-2430-1C-N5+0.669.09.6--PNG(13)(64)
23
SAO 216512
03h 50m 05s
–43° 32′ 03″
EriGSC 7576:1023C-H4:IIIa+1.808.38.6--PNG(19)(391)
24
UV Cam
04h 05m 53s
+61° 47′ 39″
CamHD 25408C-J4+2.267.58.1294PNG1118
25
XX Cam
04h 08m 39s
+53° 21′ 39″
CamHD 25878F8I+0.837.110.0--PNG1339
26
T Cae
04h 47m 18s
–36° 12′ 33″
CaeSAO 195295C-N4IV+2.327.57.6158PNG18357
27
ST Cam
04h 51m 13s
+68° 10′ 07″
CamHD 30243C-N5+0.576.78.4300PNG1119
28
TT Tau
04h 51m 31s
+28° 31′ 36″
TauHD 30755C-N5++0.807.710.0167PNG(12)96
29
V346 Aur
04h 52m 35s
+38° 30′ 20″
AurHD 280188C8,1J+2.859.39.8365PNG(12)96
30
R Lep
04h 59m 36s
–14° 48′ 22″
LepHD 31996C7,6e+5.755.511.7427PNG16269
31
EL Aur
05h 03m 23s
+50° 37′ 58″
AurHD 32088C-N5-+3.568.58.7IrrPNG(12)(40)
32
W Ori
05h 05m 23s
+01° 10′ 39″
OriHD 32736C-N5+3.425.810.0212PNG14225
33
TX Aur
05h 09m 05s
+39° 00′ 08″
AurHD 33016C-N4.5+3.198.59.2IrrPNG(12)65
34
SY Eri
05h 09m 48s
–05° 30′ 55″
EriHD 33404C-N5+2.598.310.096PNG(16)(225)
35
UV Aur
05h 21m 48s
+32° 30′ 43″
AurHD 34842C8,1Je+2.057.410.6394PNG12(97)
36
S Aur
05h 27m 07s
+34° 08′ 59″
AurHD 35556C-N5++5.288.213.3590PNG(12)97
37
RT Ori
05h 33m 13s
+07° 09′ 12″
OriHD 36602C-N5+1.108.08.9321PNG(14)180
38
SZ Lep
05h 35m 47s
–25° 44′ 18″
LepSAO 170582C-N3.5III+2.307.47.983PNG16(315)
39
S Cam
05h 41m 02s
+68° 47′ 55″
CamHD 36972C-N6-+2.497.711.6327PNG(11)20
40
W Pic
05h 43m 13s
–46° 27′ 13″
PicSAO 217489C-J5+0.727.07.8331PNG18(393)
41
TU Tau
05h 45m 13s
+24° 25′ 12″
TauHD 38218C-N4++2.875.99.2190PNG14136
42
Y Tau
05h 45m 39s
+20° 41′ 42″
TauHD 38307C-N5-+3.006.59.2242PNG14136
43
FU Aur
05h 48m 08s
+30° 37′ 51″
AurHD 38572C-N6+2.678.38.5--PNG12(98)
44
SU Tau
05h 49m 04s
+19° 04′ 22″
TauHD 247925C1,0_Hd_CH0+1.629.118.045PNG(14)136
45
TU Gem
06h 10m 53s
+26° 00′ 53″
GemHD 42272C-N5++1.997.48.4230PNG14137
46
GK Ori
06h 17m 42s
+08° 31′ 11″
OriHIP 29896C-N5---9.511.0236PNG(14)182
47
FU Mon
06h 22m 23s
+03° 25′ 27″
MonHD 44544S6.5/7.5+3.308.59.8310PNG(14)(227)
48
IV CMa
06h 23m 39s
–27° 03′ 56″
CMaGSC 6514:102C-N5-+2.918.28.8423PNG(29)(317)
49
V Aur
06h 24m 02s
+47° 42′ 23″
AurHD 44388C6,2e+4.908.513.0333PNG(23)67
50
BL Ori
06h 25m 28s
+14° 43′ 19″
OriHD 44984C-N5-+2.316.07.0154PNG25182
51
RV Aur
06h 34m 45s
+42° 30′ 13″
AurHD 46321C5,3+3.299.910.4229PNG(23)(67)
52
UU Aur
06h 36m 32s
+38° 26′ 43″
AurHD 46687C-N5-+2.645.17.0235PNG2399
53
VW Gem
06h 42m 08s
+31° 27′ 17″
GemHD 47883C5,4_Ba5+3.068.18.5IrrPNG(23)99
54
GY Mon
06h 53m 11s
–04° 34′ 34″
MonHD 50436C-N5++1.608.19.0IrrPNG27228
55
NP Pup
06h 54m 26s
–42° 21′ 56″
PupSAO 218296C-N4.5+2.676.36.5107PNG(29)395
56
RV Mon
06h 58m 21s
+06° 10′ 01″
MonHD 51620C4,5+2.937.08.9121PNG25183
57
V614 Mon
07h 01m 01s
–03° 15′ 09″
MonHD 52432C-J3.5+1.227.07.460PNG27228
58
RY Mon
07h 06m 56s
–07° 33′ 26″
MonTYC 5381-403-1C-N5+4.447.59.2456PNG(27)273
59
W CMa
07h 08m 03s
–11° 55′ 23″
CMaHD 54361C-N5+2.426.47.9IrrPNG27273
60
R CMi
07h 08m 42s
+10° 01′ 26″
CMiHD 54300SC4-7/10e+2.407.311.6338PNG25183
61
BK CMi
07h 15m 39s
+05° 03′ 40″
CMiBD+05 1606C5,5 C+4.349.2----PNG(25)(229)
62
HD 56126
07h 16m 10s
+09° 59′ 48″
CMiSAO 96709F0/5Ia C+0.888.3----PNG(25)(184)
63
BM Gem
07h 20m 59s
+24° 59′ 58″
GemTYC 1913-1170-1C-J5---8.39.2286PNG(25)(139)
64
RU Cam
07h 21m 44s
+69° 40′ 14″
CamHD 56167C0,1_CH4+1.358.19.822PNG(21)21
65
NQ Gem
07h 31m 54s
+24° 30′ 12″
GemHD 59643C6,2_CH3+2.187.48.058PNG25139
66
BE CMi
07h 36m 29s
+24° 30′ 12″
CMiHD 60826C5,4 C+2.807.010.0--PNG(25)(229)
67
V406 Pup
07h 56m 20s
–49° 58′ 55″
PupSAO 219177C-N4.5+3.427.48.2IrrPNG28(396)
68
RT Pup
08h 05m 19s
–38° 46′ 36″
PupSAO 198783C-N5.5IIIa+2.388.09.2IrrPNG(28)(362)
69
RU Pup
08h 07m 29s
–22° 54′ 45″
PupHD 67507C-N5III+3.628.111.1425PNG(26)320
70
T Lyn
08h 22m 43s
+33° 31′ 10″
LynBD+33 1686C7,1e_MS2 C+4.179.012.5400PNG(22)(102)
71
R Pyx
08h 45m 30s
–28° 12′ 02″
PyxSAO 176430C+1.037.89.6365PNG(26)321
72
UZ Pyx
08h 46m 36s
–29° 43′ 41″
PyxSAO 176458C-J4+1.857.07.5160PNG26(363)
73
X Cnc
08h 55m 22s
+17° 13′ 52″
CncHD 76221C-N4.5+2.985.67.5195PNG24142
74
T Cnc
08h 56m 40s
+19° 30′ 56″
CncTYC 1397-648-1C-N5+4.477.610.5482PNG24142
75
BD-12 2781
09h 04m 53s
–13° 01′ 09″
HyaTYC 5453-1235-1C D +2.418.9----PNG(37)(277)
76
GM Cnc
09h 13m 50s
+14° 12′ 39″
CncSAO 98443C4,4J+1.678.6----PNG(35)(187)
77
RT UMa
09h 18m 24s
+51° 24′ 08″
UMaTYC 3431-229-1C4+,4+3.498.69.6--PNG(33)44
78
W Sex
09h 50m 58s
–02° 01′ 43″
SexHD 85319C6,3 C+2.738.79.8--PNG(37)234
79
Y Hya
09h 51m 03s
–23° 01′ 02″
HyaHD 85495C-N4.5III+3.436.59.0154PNG37323
80
X Vel
09h 55m 26s
–41° 35′ 12″
VelSAO 221606F8II-0.016.77.24PNG(39)(398)
81
AB Ant
10h 11m 53s
–35° 19′ 29″
AntSAO 201156C-N4.5III+2.426.67.1IrrPNG39(365)
82
XZ Vel
10h 17m 27s
–50° 05′ 49″
VelCD-49 5125C-N:5+0.908.08.5281PNG(39)(399)
83
U Ant
10h 35m 12s
–39° 33′ 45″
AntSAO 201533C-N3+2.845.56.8IrrPNG38399
84
U Hya
10h 37m 33s
–13° 23′ 04″
HyaHD 92055C-N5+2.804.56.2389PNG36280
85
SAO 222254
10h 40m 49s
–48° 01′ 30″
VelGSC 8201:1209K0_Ba5+1.357.07.2?PNG(38)(399)
86
VY UMa
10h 45m 04s
+67° 24′ 40″
UmaHD 92839C-N5+2.385.97.0120PNG3124
87
V Hya
10h 51m 37s
–21° 15′ 00″
Hya SAO 179278C-N:6+5.436.512.0531PNG36325
88
HD 95405
11h 00m 34s
–25° 51′ 23″
HyaSAO 179425C2,0_CH4+1.188.3----PNG(36)(326)
89
HD 100764
11h 35m 43s
–14° 35′ 37″
CraSAO 156773C-H2.5+1.028.8----PNG(36)(282)
90
TV Cen
12h 14m 31s
–51° 31′ 57″
CenGSC 8242:1963C+2.827.88.5146PNG(49)(428)
91
S Cen
12h 24m 33s
–49° 26′ 24″
CenSAO 223414C-R4+1.856.58.065PNG(49)402
92
SS Vir
12h 25m 14s
+00° 46′ 10″
VirHD 108105C-N4.5+4.196.09.6361PNG47238
93
HD 108275
12h 26m 32s
–13° 47′ 42″
CorSAO 157287F3IV/V+0.428.3----PNG(47)(283)
94
Y CVn
12h 45m 07s
+45° 26′ 24″
CVnHD 110914C-N5+2.544.86.4268PNG4375
95
RU Vir
12h 47m 19s
+04° 08′ 41″
VirHD 111166C8,1e+5.758.114.2434PNG(45)239
96
DY Cru
12h 47m 24s
–59° 41′ 41″
CruTYC 8659-1394-1C-N5.5+5.808.012.0IrrPNG(50)(429)
97
HD 111908
12h 52m 29s
+07° 12′ 29″
VirSAO 119641C2,1_CH5+1.119.3----PNG(45)(194)
98
HD 112127
12h 53m 55s
+26° 46′ 48″
ComSAO 82554C-R4IIIb+1.266.9----PNG(45)(149)
99
RY Dra
12h 56m 25s
+65° 59′ 39″
DraHD 112559C-N3III+3.106.08.0200PNG4126
100
TT CVn
12h 59m 22s
+37° 49′ 04″
CVnHD 112869C-H4-+1.818.08.6105PNG(43)(108)
101
HD 113801
13h 06m 24s
–20° 03′ 31″
VirSAO 157721C-R3III+1.178.58.5--PNG(47)(330)
102
UY Cen
13h 16m 31s
–44° 42′ 15″
CenSAO 224021S6/8+2.906.98.4180PNG49403
103
BD+04 2735
13h 23m 16s
+03° 43′ 47″
VirHIP 65320C1,1+1.469.6----PNG(44)(240)
104
BD+49 2236
13h 39m 47s
+48° 18′ 06″
CVnSAO 44703C?+1.289.4----PNG(43)(76)
105
HD 234058
13h 40m 47s
+53° 44′ 13″
UMaSAO 28844C?+1.229.8----PNG(43)(49)
106
HD 121447
13h 55m 47s
–18° 14′ 56″
VirSAO 158240C2,1_CH4:_Ba4+1.897.8----PNG(46)(331)
107
HD 122547
14h 01m 55s
+32° 49′ 33″
CVnSAO 63896C3,3_CH4+1.239.5----PNG(42)(110)
108
HD 123821
14h 08m 27s
+51° 35′ 33″
BooSAO 29017C-R2IIIa+1.058.6----PNG(42)(49)
109
Z Lup
14h 35m 51s
–43° 22′ 02″
LupGSC 7818:129C4,3 +0.977.58.3288PNG(48)404
110
V553 Cen
14h 46m 33s
–32° 10′ 15″
CenSAO 205930G5I/IIIpCH+0.658.28.82PNG(48)372
111
HD 130255
14h 47m 02s
+01° 23′ 35″
VirSAO 120656G9VBa2+1.058.6----PNG(44)(243)
112
BD+83 442
15h 06m 50s
+82º 45' 23"
UMiSAO 2502C2,0+_CH3+1.0510.0----PNG(41)(10)
113
BD+30 2637
15h 17m 32s
+29° 36′ 10″
CrBSAO 83751C3,0+_CH4+1.049.7----PNG(42)(112)
114
HM Lib
15h 27m 48s
–25° 10′ 10″
LibSAO 183485C-Hd1Ib+1.177.47.6IrrPNG57334
115
BD+65 1055
15h 27m 55s
+65º 22' 40"
DraTYC 4187-427-1C4:,4_CH4+1.4610.3----PNG(51)(28)
116
R CrB
15h 48m 34s
+28° 09′ 24″
CrBHD 141527G0Iep+0.605.715.2IrrPNG53155
117
V CrB
15h 49m 31s
+39° 34′ 17″
CrBHD 141826C6,2e_MS3+1.176.912.6358PNG5379
118
RR Her
16h 04m 13s
+50° 29′ 56″
HerHD 144578SC5.5-C71e+2.527.812.5240PNG(53)51
119
NP Her
16h 17m 09s
+25° 51′ 01″
HerLEE 204C6,3p+5.5510.2----PNG(54)(156)
120
V Oph
16h 26m 43s
–12° 25′ 35″
OphHD 148182C-N:4+5.617.311.6297PNG56291
121
BD+60 1692
16h 39m 10s
+60º 28' 11"
DraSAO 17177C+1.309.5----PNG(51)(52)
122
SU Sco
16h 40m 38s
–32° 22′ 48″
ScoSAO 207911C-N5-+1.367.09.4414PNG56375
123
BD+23 2998
16h 47m 25s
+23º 12' 58"
HerSAO 84606C-R3IIIa+1.209.8----PNG(54)(156)
124
SAO 46574
17h 13m 31s
+42° 06′ 22″
HerHD 156074C-R2III+1.147.37.7--PNG(52)(81)
125
TW Oph
17h 29m 43s
–19° 28′ 22″
OphHD 158377C-N5+4.167.09.0185PNG(56)338
126
BD+02 3336
17h 31m 23s
+01º 58' 33"
OphSAO 122466C-N5III+1.919.4----PNG(54)(248)
127
TT Sco
17h 40m 30s
–41° 37′ 49″
ScoSAO 228265C4,4+3.768.09.0138PNG(58)408
128
SZ Sgr
17h 44m 56s
–18° 39′ 26″
SgrHD 161208C-N5.5+2.318.29.273PNG(67)(338)
129
BD+17 3325
17h 45m 43s
+17º 12' 52"
HerSAO 103087C2,0+_CH4+1.188.7----PNG(54)203
130
SX Sco
17h 47m 28s
–35° 42′ 04″
ScoSAO 209256C-N5+0.807.09.5IrrPNG(58)377
131
T Dra
17h 56m 23s
+58° 13′ 06″
DraHIP 87820C6,2e--7.213.5422PNG5253
132
FO Ser
18h 19m 21s
–15° 36′ 46″
SerHD 168227C-J4++1.898.58.7IrrPNG(67)294
133
AC Her
18h 30m 16s
+21° 52′ 00″
HerHD 170756F4Ibp+0.786.99.075PNG65160
134
T Lyr
18h 32m 20s
+36° 59′ 55″
LyrTYC 2636-1142-1C-J4:p+4.907.59.3IrrPNG63117
135
HK Lyr
18h 42m 50s
+36° 57′ 30″
LyrHD 173291C-N5+3.087.89.6186PNG63117
136
RV Sct
18h 47m 25s
–13° 12′ 48″
SctHD 173138C-R4++2.528.79.1--PNG(67)(295)
137
S Sct
18h 58m 20s
–07° 54′ 27″
SctHD 174325C-N5+3.096.39.0150PNG67295
138
UV Aql
18h 58m 32s
+14° 21′ 49″
AqlHD 176200C5,3+3.558.09.6386PNG65206
139
V Aql
19h 04m 24s
–05° 41′ 05″
AqlHD 177336C-N5+4.196.68.4407PNG67251
140
RY Sgr
19h 16m 32s
–33° 31′ 20″
SgrSAO 211117Cpec+0.025.814.038PNG66379
141
V1942 Sgr
19h 19m 09s
–15° 54′ 30″
SgrHD 180953C-N5++2.346.77.0121PNG66296
142
U Lyr
19h 20m 09s
+37° 52′ 36″
LyrTYC 3134-1708-1C4,5e+4.638.313.5452PNG(63)118
143
UX Dra
19h 21m 35s
+76° 33′ 34″
DraHD 183556C-N5+2.875.97.1175PNG6113
144
NSV 11960
19h 23m 10s
–10° 42′ 11″
AqlHD 182040C-Hd2II+1.097.07.129PNG66296
145
AW Cyg
19h 28m 47s
+46° 02′ 38″
CygTYC 3543-2275-1C4,5+1.077.18.5206PNG(63)(83)
146
AQ Sgr
19h 34m 18s
–16° 22′ 27″
SgrHD 184283C-N5+2.786.68.5200PNG66297
147
TT Cyg
19h 40m 57s
+32° 37′ 05″
CygHD 186047C-N5-+0.237.09.1118PNG(62)119
148
AX Cyg
19h 57m 12s
+44° 15′ 40″
CygHD 189256C-N5-+1.697.98.8361PNG62(84)
149
V1469 Aql
20h 01m 03s
+09° 30′ 51″
AqlHD 189711C4,3_CH3+2.068.48.798PNG(64)(207)
150
BF Sge
20h 02m 23s
+21° 05′ 24″
SgeHD 190048C2,4+3.078.510.0177PNG(64)(162)
151
X Sge
20h 05m 05s
+20° 38′ 51″
SgeHD 190606C6,4+3.357.09.7196PNG64(163)
152
SV Cyg
20h 09m 30s
+47° 52′ 17″
CygHD 191738C7,4e+0.078.58.7196PNG(62)(84)
153
RY Cyg
20h 10m 23s
+35° 56′ 50″
CygHD 191783C5,4+3.308.510.3IrrPNG(62)119
154
RS Cyg
20h 13m 23s
+38° 43′ 44″
CygHD 192443C-N5.5+2.866.59.5417PNG62119
155
RT Cap
20h 17m 06s
–21° 19′ 04″
CapHD 192737C6,4+3.327.08.1422PNG66343
156
WX Cyg
20h 18m 33s
+37° 26′ 59″
CygHD 193368C-J6+4.158.813.2410PNG(62)119
157
U Cyg
20h 19m 36s
+47° 53′ 39″
CygHD 193680C9,2e+5.955.912.1463PNG6284
158
V Cyg
20h 41m 18s
+48° 08′ 28″
CygTYC 3578-3282-1C7,4eJ+6.357.713.9421PNG6285
159
CY Cyg
20h 46m 50s
+46° 03′ 06″
CygHD 198164SC2_Zr0-0.187.98.4--PNG(62)(85)
160
SAO 106516
20h 48m 37s
+17° 50′ 24″
DelHD 198269C-H3IV+1.297.98.1--PNG(64)(164)
161
NSV 13571
21h 09m 59s
+26° 36′ 55″
VulHD 201626C-H2IV+1.108.18.2--PNG(75)(165)
162
T Ind
21h 20m 09s
–45° 01′ 18″
IndSAO 230635C7,2+2.336.08.5272PNG68413
163
S Cep
21h 35m 13s
+78° 37′ 28″
CepHD 206362C7,3e+4.737.412.9484PNG7114
164
V460 Cyg
21h 42m 01s
+35° 30′ 36″
CygHD 206570C-N5+2.485.67.0180PNG73122
165
RV Cyg
21h 43m 16s
+38° 01′ 02″
CygHD 206750C-N5+1.217.19.3263PNG73122
166
RX Peg
21h 56m 22s
+22° 51′ 43″
PegHD208526C-J4.5+3.027.79.5629PNG(75)166
167
RZ Peg
22h 05m 52s
+33° 30′ 24″
PegHD 209890SC5-9/9-e+3.807.613.6437PNG73122
168
RU Aqr
23h 24m 24s
–17° 19′ 08″
AquHD 220515M4/5III+1.198.510.1119PNG(76)349
169
ST And
23h 38m 45s
+35° 46′ 21″
AndHD 222241C5,4e_MS3+5.397.711.8327PNG(72)124
170
TX Psc
23h 46m 23s
+03° 29′ 12″
PscHD 223075C-N6+2.604.85.2IrrPNG74215
171
SAO 128396
23h 49m 05s
+06° 22′ 57″
PscHD 223393C-R3III+1.378.58.8--PNG(74)(170)
Proudly powered by Weebly
  • Home
  • Bio
  • CV
  • Media
  • Photos
    • Germany 2019
    • Hungary 2019
    • Taiwan 2018
    • New Zealand 2018
    • UK 2017
    • Wyoming Eclipse 2017
    • Catalonia 2017
    • Romania 2016
    • Japan 2016
    • Korea 2014
  • Astronomy
    • Carbon Star List
    • The Bluest Hipparchos Stars
    • Astrophotography
  • Research
    • Earthshine
    • Skyglow
    • stars19
  • Papers
  • Books
    • Ashen Light of Venus
    • The Lost Constellations
    • Uncharted Constellations
  • Contact